Packing Lines, Planes, etc.: Packings in Grassmannian Spaces
نویسندگان
چکیده
منابع مشابه
Packing Planes in Four Dimensions and Other Mysteries
How should you choose a good set of (say) 48 planes in four dimensions? More generally, how do you find packings in Grassmannian spaces? In this article I give a brief introduction to the work that I have been doing on this problem in collaboration with A. R. Calderbank, J. We have found many nice examples of specific packings (70 4-spaces in 8-space, for instance), several general construction...
متن کاملA ug 2 00 2 Packing Lines , Planes , etc . : Packings in Grassmannian Spaces
This paper addresses the question: how should N n-dimensional subspaces of m-dimensional Euclidean space be arranged so that they are as far apart as possible? The results of extensive computations for modest values of N, n, m are described, as well as a reformulation of the problem that was suggested by these computations. The reformulation gives a way to describe n-dimensional subspaces of m-...
متن کاملConstructing Packings in Grassmannian Manifolds via Alternating Projection
This paper describes a numerical method for finding good packings in Grassmannian manifolds equipped with various metrics. This investigation also encompasses packing in projective spaces. In each case, producing a good packing is equivalent to constructing a matrix that has certain structural and spectral properties. By alternately enforcing the structural condition and then the spectral condi...
متن کاملConstructing Packings in Projective Spaces and Grassmannian Spaces via Alternating Projection
This report presents a numerical method for finding good packings on spheres, in projective spaces, and in Grassmannian manifolds equipped with various metrics. In each case, producing a good packing is equivalent to constructing a matrix that has certain structural and spectral properties. By alternately enforcing the structural condition and then the spectral condition, it is frequently possi...
متن کاملGrassmannian Frames with Applications to Coding and Communication
For a given class F of uniform frames of fixed redundancy we define a Grassmannian frame as one that minimizes the maximal correlation |〈fk, fl〉| among all frames {fk}k∈I ∈ F . We first analyze finite-dimensional Grassmannian frames. Using links to packings in Grassmannian spaces and antipodal spherical codes we derive bounds on the minimal achievable correlation for Grassmannian frames. These ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Experimental Mathematics
دوره 6 شماره
صفحات -
تاریخ انتشار 1996